Exercise 58

Find an equation of the tangent line to the curve $y=x^{4}+1$ that is parallel to the line $32 x-y=15$.

Solution

Writing the given equation of the line as

$$
y=32 x-15
$$

we see that it has a slope of 32 . The aim is to take the derivative of the given function and find where it's equal to 32 .

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x^{4}+1\right) \\
& =\frac{d}{d x}\left(x^{4}\right)+\frac{d}{d x}(1) \\
& =\left(4 x^{3}\right)+(0) \\
& =4 x^{3}
\end{aligned}
$$

Set this equal to 32 and solve for x.

$$
\begin{aligned}
4 x^{3} & =32 \\
x^{3} & =8 \\
x & =2
\end{aligned}
$$

Plug this value of x into the given function to get the corresponding y-value on the curve.

$$
y(2)=2^{4}+1=17
$$

Finally, determine the equation of the line with slope 32 that goes through the point $(2,17)$.

$$
y-17=32(x-2)
$$

